

Eskandar K. *

Harnessing the Microbiome: Biotechnological Approaches to Health and Sustainability

Author address:

Faculty of Medicine and Surgery,
Helwan University,
Cairo, Egypt

Correspondence:

Eskandar K.
Faculty of Medicine and Surgery,
Helwan University,
Cairo, Egypt
Tel.: +49 1775965567
e-mail: kiroloss.eskandar@gmail.com
<https://orcid.org/0000-0003-0085-3284>

Article info:

Received: 25 January 2025

Accepted: 15 July 2025

ABSTRACT

The microbiome—complex communities of microorganisms inhabiting humans, plants, animals, and ecosystems—plays a pivotal role in health and sustainability. Advances in biotechnology have unlocked the potential to harness these microbial ecosystems for transformative applications across diverse fields. This review explores cutting-edge microbiome research, highlighting its contributions to human health through microbiome-based therapeutics, precision medicine, and the gut-brain axis, including validated clinical applications such as fecal microbiota transplantation (FMT) for treating *Clostridium difficile* infections. In agriculture, we examine microbial innovations for sustainable farming, soil health, and livestock productivity, such as the use of nitrogen-fixing bacteria to reduce chemical fertilizer dependence. Additionally, we delve into environmental applications, including bioremediation using oil-degrading microbial consortia, carbon sequestration, and marine microbiomes. Validated omics platforms, AI-based predictive tools, and programmable synthetic biology systems are accelerating progress while presenting challenges and ethical considerations. By integrating these innovations, microbiome biotechnology holds immense potential to deliver scalable solutions for enhancing human health, improving food systems, and addressing global environmental challenges.

Key words: Microbiome biotechnology, Human health, Sustainable agriculture, Environmental applications, Synthetic biology.

Introduction

The microbiome comprises the collective genomes of microorganisms—including bacteria, fungi, viruses, and archaea—that inhabit various environments such as the human body, agricultural systems, and natural ecosystems (Figure 1). These microbial communities are integral to the functioning of their respective habitats, influencing health, productivity, and ecological balance (Berg et al., 2020).

In humans, the microbiome is crucial for numerous physiological processes. It aids in nutrient extraction, metabolism, and the development of the immune system. Disruptions in the human microbiome have been linked to various diseases, highlighting its importance in maintaining health (Hou et al., 2022). A notable example is the successful use of fecal microbiota transplantation (FMT) to treat recurrent *Clostridium difficile* infections, showcasing the clinical potential of personalized microbiome-based therapies (Schupack et al., 2022).

In agricultural contexts, the soil microbiome plays a vital role in sustainable farming practices. Microbial communities in the soil contribute to nutrient cycling, plant growth, and

Figure 1. Ecosystem of Microbiome Applications in Health, Agriculture, and Environment

disease suppression, thereby enhancing crop productivity and resilience. Understanding and managing these microbial interactions are essential for developing sustainable agricultural systems (Bertola et al., 2021).

Environmental microbiomes are fundamental to ecosystem processes. Microorganisms are involved in biogeochemical cycles, such as carbon and nitrogen cycling, which are critical for ecosystem health and function. They also play a role in environmental remediation, such as the degradation of pollutants, thereby contributing to environmental sustainability (Aralappanavar et al., 2024).

Recent biotechnological advancements have enabled the manipulation of microbiomes to promote health and sustainability. In medicine, interventions like fecal microbiota transplantation (FMT) have been developed to restore healthy gut microbiota, offering potential treatments for various diseases. In agriculture, microbiome engineering is being explored to enhance soil fertility and plant health, contributing to more sustainable farming practices (Yadav & Chauhan, 2021). However, these innovations also raise important ethical and regulatory concerns related to data privacy, long-term ecological effects, and the responsible use of engineered microbial consortia. Addressing these dimensions is critical to ensuring safe and equitable advancement in the field. These developments underscore the emerging importance of microbiome research in addressing global health and environmental challenges.

Methodology

This literature review adhered to a systematic methodology based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to ensure a comprehensive and transparent review process. The methodology encompassed the following key steps:

Identification of Relevant Studies

A rigorous search strategy was developed to identify pertinent studies in microbiome biotechnology. The search was conducted across multiple reputable databases, including PubMed, Google Scholar, Scopus, and Web of Science. Keywords and Boolean operators were employed to maximize the retrieval of relevant literature. The primary search terms included:

"Microbiome biotechnology"
 "Human health"
 "Sustainable agriculture"
 "Environmental applications"
 "Synthetic biology"

Search strings were tailored to the syntax of each database, combining the terms with Boolean operators (AND/OR) and applying filters to limit results to peer-reviewed journal articles published in English.

Inclusion and Exclusion Criteria

Clear inclusion and exclusion criteria were established to ensure that only the most relevant and high-quality studies were included in the review. The inclusion criteria were as follows:

1. Articles published in peer-reviewed journals.
2. Studies conducted in English.
3. Research focusing on microbiome biotechnology applications in human health, agriculture, and environmental sustainability.
4. Studies utilizing omics technologies, synthetic biology, or artificial intelligence for microbiome research.
5. Papers published within the last 10 years to capture the most recent advancements.

Exclusion criteria were also applied to eliminate irrelevant or low-quality studies:

1. Non-English publications.
2. Articles lacking a clear focus on microbiome applications or methodology.
3. Conference abstracts, editorials, or opinion pieces without substantive data.

Study Selection Process

The initial database search retrieved 142 articles. Following the removal of duplicates, 99 unique articles remained. These articles underwent a two-stage screening process:

Stage 1: Title and Abstract Screening

Two independent reviewers assessed the titles and abstracts of the retrieved articles. Articles not meeting the inclusion criteria or clearly unrelated to microbiome biotechnology were excluded at this stage, resulting in 64 articles advancing to the next stage.

Stage 2: Full-Text Review

The full texts of the remaining articles were thoroughly reviewed for eligibility based on the predefined criteria. Any disagreements between reviewers were resolved through discussion or consultation with a third reviewer. This process resulted in 47 articles being deemed suitable for inclusion in the review (Table 1).

Data Extraction and Synthesis

A standardized data extraction form was utilized to collect relevant information from the selected studies, including:

- Study objectives

Table 1: Summary of Included Studies

Title	Year	Journal
Microbiome and Human Health: Current Understanding, Engineering, and Enabling Technologies	2023	Chemical Reviews
Power of Plant Microbiome: A Sustainable approach for Agricultural resilience	2024	Plant Stress
Effects of microplastics on soil microorganisms and microbial functions in nutrients and carbon cycling – A review	2024	The Science of the Total Environment
Elucidating the role of diet in maintaining gut health to reduce the risk of obesity, cardiovascular and other age-related inflammatory diseases	2024	Gut Microbes
Diagnosing and engineering gut microbiomes	2024	EMBO Molecular Medicine
Soil Microbial Strategies for Climate Mitigation	2024	Sustainable Microbiology
Microbiome definition re-visited: old concepts and new challenges	2020	Microbiome
Improvement of Soil Microbial Diversity through Sustainable Agricultural Practices	2021	Microorganisms
Harnessing the Microbiome: A Comprehensive Review on Advancing Therapeutic Strategies for Rheumatic Diseases	2023	Cureus
Fecal Microbiota Transplantation as New Therapeutic Avenue for Human Diseases	2022	Journal of Clinical Medicine
Measuring the microbiome: Best practices for developing and benchmarking microbiomics methods	2020	Computational and Structural Biotechnology Journal
Soil microorganisms: Their role in enhancing crop nutrition and health	2024	Diversity
Soil microbiota as game-changers in restoration of degraded lands	2022	Science
Microbiome-assisted restoration of degraded marine habitats	2023	Frontiers in Marine Science
Nutritional modulation of the Gut–Brain axis	2024	Metabolites
The need for an integrated multi-OMICs approach in microbiome science	2023	Comprehensive Reviews in Food Science and Food Safety
Feed efficiency and enteric methane emissions indices	2024	The Science of the Total Environment

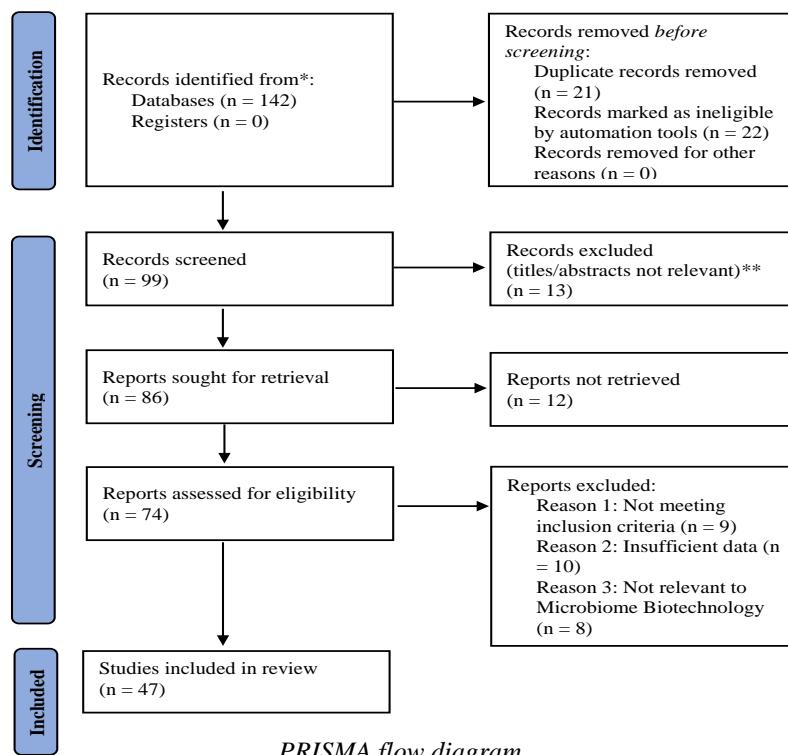
Phage therapy: Targeting intestinal bacterial microbiota	2023	JHEP Reports
Harnessing the plant microbiome for environmental sustainability	2024	The Science of the Total Environment
Eco-Smart Biocontrol strategies utilizing potent microbes	2024	Biotechnology Reports
Using new technologies to analyze gut microbiota and predict cancer risk	2024	Cells
Marine microbial bioprospecting	2022	Journal of Basic Microbiology
Microbiota in health and diseases	2022	Signal Transduction and Targeted Therapy
Probiotic approaches to improving dairy production	2023	Journal of Dairy Science
The Role of Micro-biome engineering in Enhancing Food Safety and Quality	2025	Biotechnology Notes
A comprehensive review of sustainable bioremediation techniques	2024	Waste Management Bulletin
Help, hope and hype: ethical considerations of human microbiome research	2018	Protein & Cell
Antimicrobial Peptides Derived from Bacteria	2024	International Journal of Molecular Sciences
Environmental Chemicals, the Human Microbiome, and Health Risk	2017	National Academies Press
Advancing microbiota therapeutics: the role of synthetic biology	2024	Frontiers in Bioengineering and Biotechnology
Microbiome Research as an Effective Driver of Success Stories	2022	Frontiers in Microbiology
Metagenomic approaches in microbial ecology	2020	Microbial Genomics
Ocean restoration and the Strategic Plan of the Marine Microbiome	2022	Book Chapter
Advances in microbial based bio-inoculum	2024	Current Research in Microbial Sciences
Harnessing AI and gut microbiome research for precision health	2024	Deleted Journal
The promise of the gut microbiome as part of individualized treatment strategies	2022	Nature Reviews Gastroenterology & Hepatology

Insights into plant–microbe interactions in the rhizosphere	2023	New Crops
Environmental microbiome engineering for the mitigation of climate change	2023	Global Change Biology
Gut-Brain Axis: Role of Gut Microbiota on Neurological Disorders	2020	International Journal of Molecular Sciences
Implementation of artificial intelligence (AI) and machine learning (ML) in microbiology	2024	Methods in Microbiology
Role of Arbuscular Mycorrhizal Fungi	2023	Plants
Statistical normalization methods in microbiome data	2023	Gut Microbes
Microbiome therapeutics: exploring the present scenario and challenges	2021	Gastroenterology Report
Metatranscriptomics-guided genome-scale metabolic modeling	2023	Cell Reports Methods
Microbial consortia are needed to degrade soil pollutants	2022	Microorganisms
Immunological mechanisms of inflammatory diseases caused by gut microbiota dysbiosis	2023	Biomedicine & Pharmacotherapy
Elucidation of complexity and prediction of interactions in microbial communities	2017	Microbial Biotechnology

- Methodologies employed
- Key findings related to microbiome applications in health, agriculture, or environmental contexts
- Tools and technologies utilized (e.g., metagenomics, synthetic biology, AI)

The extracted data were synthesized thematically, with findings organized into sections corresponding to human health, agriculture, and environmental sustainability. Emerging trends and challenges were also identified and discussed.

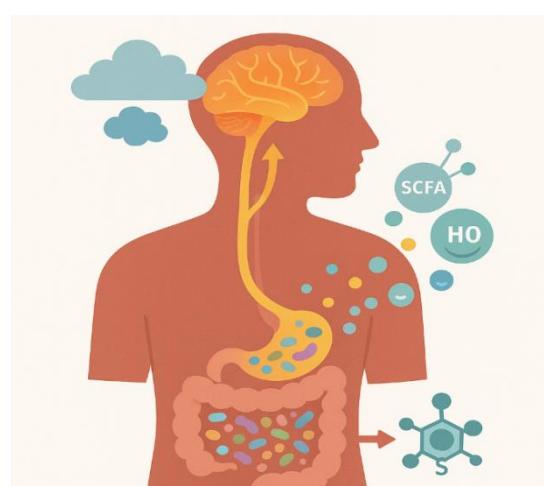
Quality Assessment


To ensure the reliability of the included studies, a quality assessment was performed using established criteria, such as:

- Clarity and rigor of methodologies
- Relevance of study objectives to microbiome biotechnology
- Adequacy of data to support conclusions

The PRISMA flow diagram provides a visual representation of the study selection process, including the number of records identified, screened, excluded, and included at each stage.

The Human Microbiome and Health


Recent advancements in human microbiome research have significantly deepened our understanding of the complex interactions between microbial communities and host health. The gut microbiome, in particular, has been extensively studied, revealing its crucial role in nutrient extraction, metabolism, and immune system development (Aggarwal et al., 2023). Disruptions in the gut microbiome, known as dysbiosis, have been linked to various diseases, including inflammatory bowel disease, obesity, and metabolic disorders. Similarly, the skin microbiome acts as a protective barrier against pathogens and modulates immune responses, while the oral microbiome maintains oral health and has systemic implications (Zhao et al., 2023). These insights underscore the microbiome's integral role in human health and disease.

In precision medicine, microbiome engineering has emerged as a promising approach to tailor interventions based on individual microbial compositions. Probiotics, live beneficial bacteria, and prebiotics, non-digestible fibers that fuel these bacteria, have been utilized to modulate the gut microbiome (Schupack et al., 2022). Combining probiotics with a fiber-rich diet creates an optimal environment for beneficial bacteria, potentially reducing inflammation, improving digestion, and lowering the risk of gastrointestinal illnesses (Aziz et al., 2024). Fecal microbiota transplantation (FMT) has also gained attention as a method to restore healthy gut microbiota, offering potential treatments for various diseases (Biazzo & Deidda, 2022). A notable example includes FMT's FDA approval in the treatment of recurrent *Clostridioides difficile* infections, which demonstrated a success rate of over 85% in clinical trials—highlighting its effectiveness as a microbiome-based therapy. Additionally, emerging trials are investigating how the gut microbiome influences responses to cancer immunotherapy, particularly checkpoint inhibitors, suggesting that microbiome profiling could enhance patient stratification and treatment success (Yadegar et al., 2023).

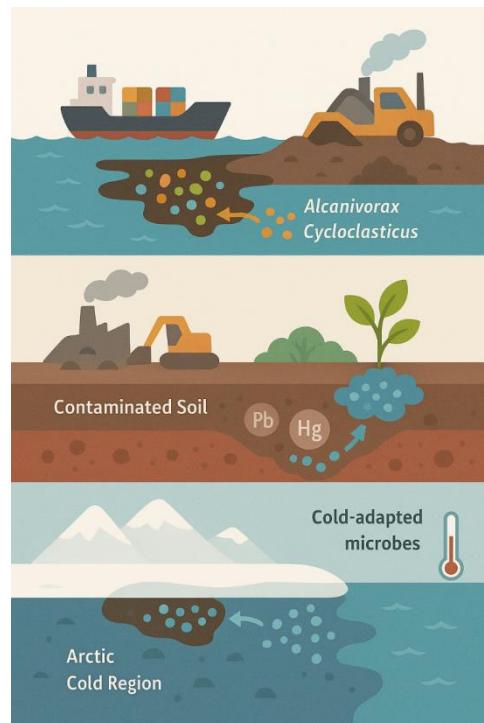
The gut-brain axis, a bidirectional communication pathway between the gut microbiome and the central nervous

system, has been implicated in neurodevelopment and mental health disorders (Figure 2). Research suggests that gut bacteria can influence brain function and behavior, contributing to conditions such as anxiety, depression, and autism spectrum disorders (Suganya & Koo, 2020). Biotechnological interventions targeting the gut-brain axis, including specific probiotic strains and dietary modifications,

Figure 2. Mechanistic Schematic of the Gut-Brain Axis

are being explored to modulate these effects and offer new avenues for mental health treatment (Del Portillo et al., 2024).

Despite these promising developments, challenges and ethical considerations persist in the application of personalized microbiome therapies. The complexity and individuality of microbiomes make it difficult to predict responses to interventions, necessitating further research to understand these dynamics (Bhattacharjee et al., 2023). One major ethical issue involves the potential misuse or overreach in microbiome data interpretation, especially as AI and big data analytics become more embedded in clinical workflows. Concerns over informed consent, long-term storage, and use of microbiome data in insurance or employment decisions require urgent regulatory clarity. According to Ma et al. (2018), and further echoed in the National Academies report (2017), ensuring equitable access, patient autonomy, and robust oversight of microbiome editing tools is critical for the ethical advancement of the field. Addressing these challenges is crucial for the responsible advancement of microbiome-based precision medicine.


Microbiomes in Agriculture

Plant–microbe interactions are fundamental to sustainable agriculture, particularly within the rhizosphere—the soil region influenced by plant roots. The rhizosphere microbiome plays a pivotal role in nutrient cycling, facilitating the conversion of atmospheric nitrogen into forms accessible to plants, thereby enhancing soil fertility and promoting plant growth (Shi et al., 2023). Beneficial microorganisms, such as mycorrhizal fungi and nitrogen-fixing bacteria, establish symbiotic relationships with plants, improving nutrient uptake and resilience against environmental stressors (Wahab et al., 2023). Biotechnological applications have harnessed these interactions through the development of biofertilizers and biopesticides, which utilize beneficial microbes to enhance crop productivity and protect against pests, reducing reliance on chemical inputs (Samantaray et al., 2024). For instance, the well-documented *Rhizobium*-legume symbiosis has been instrumental in increasing nitrogen availability in leguminous crops, leading to significant yield improvements. Similarly, phosphate-solubilizing bacteria (PSB) have been employed in rice paddies to increase phosphorus uptake, improving grain production while lowering synthetic fertilizer usage (Habtewold & Goyal, 2023; Ríos-Ruiz et al., 2024).

Combatting plant pathogens sustainably involves employing microbial biocontrol agents. These beneficial microbes suppress harmful pathogens through various mechanisms, including competition for resources, production

of antimicrobial compounds, and induction of plant defense responses (Haq et al., 2024). Additionally, phage-based solutions are being engineered to target specific bacterial pathogens, offering a precise approach to disease management without adversely affecting beneficial microbiota (Fujiki & Schnabl, 2023). Such strategies contribute to sustainable pest management by reducing the need for synthetic pesticides and mitigating their environmental impact. A commercial example is *BioNema*, a biological nematicide based on naturally occurring microbial strains that effectively control plant-parasitic nematodes while maintaining ecological safety. Moreover, studies using EasyAmplicon (10.1002/imt2.83) have demonstrated robust tools for profiling microbial consortia in agricultural soil, aiding in the formulation of custom microbial inoculants tailored to specific crops and soil conditions (Hao et al., 2024).

Maintaining soil health is crucial for sustainable agriculture, with soil microbiome diversity serving as a key indicator of soil quality. Strategies to enhance this diversity include incorporating organic amendments, practicing crop rotation, and reducing tillage, all of which create favorable conditions for a diverse microbial community (Chen et al., 2024). In degraded lands, microbiome restoration efforts focus on reintroducing beneficial microbial consortia to reestablish ecological balance, improve soil structure, and

Figure 3. Environmental Bioremediation by Microbial Consortia

enhance fertility, thereby facilitating the recovery of productive agricultural systems (Coban et al., 2022) (Figure 3).

In livestock production, manipulating the gut microbiota presents opportunities to enhance feed efficiency and reduce methane emissions, a significant contributor to greenhouse gases (Fregulia et al., 2024). Probiotic and prebiotic applications have been explored to modulate the rumen microbiome, aiming to optimize fermentation processes, improve nutrient absorption, and suppress methanogenic archaea responsible for methane production (Jeni et al., 2023). These interventions not only promote animal health and productivity but also contribute to environmental sustainability by mitigating the livestock sector's carbon footprint.

breaking down petroleum hydrocarbons in marine environments, offering sustainable solutions for oil spill remediation (Zhang & Zhang, 2022).

To illustrate these findings quantitatively, Table 2 below summarizes selected microbial consortia used in oil spill remediation, detailing their taxonomic composition, degradation rates, environments applied, and key outcomes.

Regarding climate change, microbiomes play a crucial role in carbon cycling and greenhouse gas mitigation. Innovative research is exploring the engineering of synthetic microbiomes to enhance carbon sequestration in soils and oceans (Beattie et al., 2024). For instance, scientists are investigating how engineered plant-associated microbiomes can improve carbon capture and storage in agricultural systems, potentially mitigating climate change impacts (Hao

Table 2. Microbial Consortia Used in Oil Spill Remediation

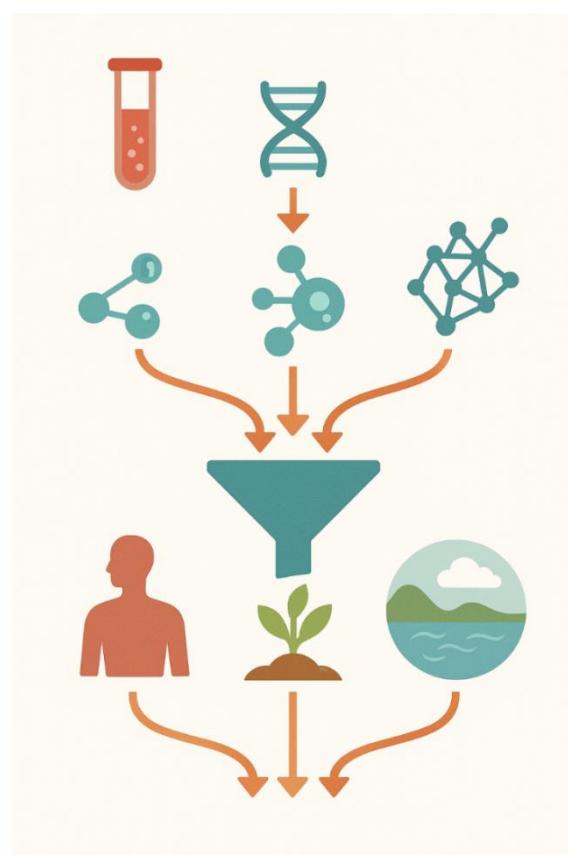
Microbial Taxa	Degradation Rate (%)	Environment	Outcome
Alcanivorax borkumensis, Marinobacter hydrocarbonoclasticus	85–90% in 14 days	Coastal seawater (Mediterranean)	Significant reduction in total petroleum hydrocarbons (TPH)
Pseudomonas aeruginosa, Acinetobacter calcoaceticus	78% in 10 days	Oil-contaminated shoreline	Accelerated emulsification and breakdown of crude oil
Rhodococcus erythropolis, Bacillus subtilis	60–75% in 21 days	Estuarine mudflat	Degradation of polycyclic aromatic hydrocarbons (PAHs)
Thalassospira, Cycloclasticus	70–88% in 20 days	Open-ocean microcosm	Restoration of microbial equilibrium and detoxification
Halomonas, Oleispira	82% in 15 days	Arctic seawater	Biodegradation under low-temperature conditions

Environmental Applications of Microbiome Research

Recent advancements in microbiome research have unveiled significant environmental applications, particularly in bioremediation, climate change mitigation, and marine ecosystem management (Silverstein et al., 2023). In bioremediation, the utilization of microbial consortia has shown promise in degrading pollutants such as hydrocarbons, plastics, and heavy metals. Recent studies have highlighted the effectiveness of specific bacterial and fungal taxa in

et al., 2024). Recent contributions from *iMeta* have also highlighted multi-species microbial networks capable of increasing carbon fixation in saline and alkaline soils, presenting practical applications for degraded lands (Cui et al., 2025).

Marine microbiomes are also gaining attention for their potential in drug discovery, aquaculture, and carbon cycling. The vast diversity of marine microbial life offers a rich resource for bioprospecting novel compounds with pharmaceutical applications (Hosseini et al., 2022). Recent studies have emphasized the importance of understanding these microbial communities to harness their potential


effectively. Furthermore, the restoration and rehabilitation of marine microbiomes are emerging as essential strategies to mitigate ecosystem decline (Corinaldesi et al., 2023). By restoring healthy microbial communities, it is possible to enhance the resilience of marine ecosystems against environmental stressors, thereby promoting overall ocean health (Reuver et al., 2022). For example, recent work published in *iMeta* describes successful transplantation of microbial mats to coral-degraded reefs, resulting in improved microbial diversity and coral survival under thermal stress. These interventions illustrate scalable, nature-based solutions grounded in microbial biotechnology (Levy et al., 2024).

Emerging Biotechnological Tools in Microbiome Research

Recent advancements in biotechnological tools have significantly enhanced microbiome research, providing deeper insights into microbial communities and their functions. “Omics” technologies—standardized as metagenomics (genomic content), metatranscriptomics (gene expression), and metabolomics (metabolic products)—have revolutionized the analysis of microbiomes (Hemmati et al., 2024) (Figure 4). Metagenomics allows for the comprehensive examination of genetic material recovered directly from environmental samples, facilitating the identification of microbial diversity and potential functions (Pérez-Cobas et al., 2020). Metatranscriptomics assesses gene expression profiles, offering insights into active metabolic pathways, while metabolomics analyzes the complete set of metabolites, elucidating the biochemical activities within a microbiome. The integration of these multi-omics layers—referred to as “systems microbiology”—enables a holistic, data-driven understanding of microbial networks and their roles in human, agricultural, and environmental systems (Zampieri et al., 2023).

To streamline and standardize microbiome data analysis, tools such as EasyAmplicon (*iMetaOmics*) have been developed to facilitate robust amplicon sequencing workflows. EasyAmplicon is a pipeline that integrates raw sequence preprocessing, OTU/ASV clustering, taxonomic annotation, and statistical analysis within a reproducible, GUI-supported framework. It is particularly suited for researchers conducting 16S rRNA or ITS-based microbial community profiling and supports high-throughput multi-sample comparisons (Yousuf et al., 2024). EasyAmplicon has improved accessibility to advanced microbiome analytics while ensuring data reproducibility and scalability.

Synthetic biology and microbiome engineering have emerged as pivotal fields in developing targeted

Figure 4. Integrated “Omics” Pipeline in Microbiome Research

interventions. CRISPR-based genome editing tools have been employed to modify microbial genomes with high precision, facilitating applications in both therapeutic and agricultural contexts (Nazir et al., 2024). For instance, engineered bacteria have been designed to produce antimicrobial peptides, offering potential treatments for infections. Additionally, synthetic microbial communities are being constructed to achieve specific outcomes, such as enhanced plant growth or pollutant degradation. These engineered consortia are tailored to perform desired functions, presenting innovative solutions across various sectors (Mihaylova-Garnizova et al., 2024). Integrating synthetic biology with multi-omics datasets helps in rational microbial design, where engineered functions are mapped onto ecological niches or host requirements.

Artificial intelligence (AI) and machine learning (ML) have become integral in predicting microbiome dynamics and designing precision interventions. In microbiome research, AI refers to computational models that mimic cognitive functions such as pattern recognition, while ML involves

statistical algorithms that improve prediction accuracy over time with more data. AI algorithms analyze extensive datasets to identify patterns and predict microbial behavior, aiding in the development of targeted therapies (Tripathi et al., 2024). In healthcare, AI has been utilized to predict disease states based on microbiome compositions, facilitating early diagnosis and personalized treatment strategies. Moreover, AI-driven approaches assist in the design of synthetic microbiomes with minimized pathogenicity, optimizing therapeutic efficacy while ensuring safety (Saxena et al., 2024). AI is increasingly integrated into multi-omics pipelines, from feature extraction and dimensionality reduction to clustering, modeling, and phenotype prediction. These applications enable researchers to move from descriptive to predictive microbiome science (Toussaint et al., 2024).

Challenges and Future Directions

Despite significant advancements, microbiome research faces several challenges that impede the full realization of its potential across health, agriculture, and environmental applications (Olmo et al., 2022). One primary limitation is the complexity inherent in microbiome manipulation technologies. The intricate interactions within microbial communities and between microbes and their hosts make it difficult to predict the outcomes of specific interventions (Zuñiga et al., 2017). Current tools often lack the precision needed to modulate microbiomes without unintended consequences, highlighting the necessity for more refined approaches (National Academies of Sciences, Engineering, and Medicine, 2017).

Standardization in microbiome research and product development presents another significant hurdle. Variations in sample collection, processing, and analytical methodologies can lead to inconsistent results, complicating data comparison across studies (Xia, 2023). Establishing standardized protocols is essential to ensure reproducibility and reliability in microbiome research, thereby facilitating the development of effective microbiome-based products (Bokulich et al., 2020).

The potential risks associated with microbiome engineering cannot be overlooked. Interventions aimed at altering microbial communities may have unintended ecological or health consequences, such as disrupting existing microbial balances or facilitating the emergence of pathogenic organisms (Barazzone et al., 2024). Regulatory oversight remains fragmented, particularly in therapeutic applications. The U.S. Food and Drug Administration (FDA) currently classifies microbiome-based therapies such as fecal microbiota transplantation (FMT) under biological products,

requiring Investigational New Drug (IND) applications. However, a lack of global harmonization and biosafety protocols for genetically modified (GM) microbes poses challenges to safe deployment across sectors. Comprehensive policy frameworks are needed to standardize risk assessment, ensure traceability, and guide clinical and environmental applications. (Kumar et al., 2025)

Looking ahead, the future of microbiome research holds promising prospects. Advancements in multi-omics technologies, coupled with integrative data analysis approaches, are expected to deepen our understanding of microbial ecosystems and their functions (Ferrocino et al., 2023). In health, this knowledge could lead to personalized microbiome-based therapies, offering novel treatments for various diseases. In agriculture, manipulating plant-associated microbiomes may enhance crop productivity and resilience, contributing to sustainable farming practices (Ali et al., 2024). Furthermore, environmental applications, such as bioremediation and climate change mitigation strategies, stand to benefit from engineered microbial communities designed to perform specific ecological functions (Kuppan et al., 2024).

Future research should focus on microbiome manipulation under climate stress scenarios, particularly in vulnerable agroecosystems and marine habitats. Additionally, improving AI-driven prediction models for microbiome-host interactions—especially under non-equilibrium or extreme environmental conditions—represents a critical area for development. These approaches will enhance the reliability and specificity of microbiome-based interventions.

Conclusion

In conclusion, the exploration of microbiome research and its biotechnological applications marks a transformative era in science, offering profound implications for human health, agriculture, and environmental sustainability. Advances in omics technologies, synthetic biology, and artificial intelligence have revolutionized our ability to decode, manipulate, and harness microbial communities. From enhancing human health through precision microbiome therapies to promoting sustainable agriculture and mitigating environmental challenges, microbiome research underscores the interconnectedness of biological systems.

In human health, fecal microbiota transplantation (FMT) has shown over 85% efficacy in treating recurrent *C. difficile* infections. In agriculture, the use of phosphate-solubilizing bacteria in rice fields has improved crop yield by up to 20%. In environmental applications, oil-degrading microbial

consortia have demonstrated hydrocarbon removal rates exceeding 85% in marine remediation efforts.

However, addressing challenges such as standardization, technological limitations, and ethical concerns is vital to unlock the full potential of this field. Robust global frameworks and regulatory harmonization are essential to ensure that microbiome-based innovations are developed, deployed, and scaled responsibly and equitably across nations. As microbiome research continues to evolve, it holds promise for innovative solutions to some of the most pressing global challenges, paving the way for a future where microbial ecosystems are at the forefront of health and sustainability.

References

Aggarwal N, Kitano S, Puah G R Y, Kittelmann S, Hwang I Y, Chang M W. 2023. Microbiome and Human Health: Current Understanding, Engineering, and Enabling Technologies. *Chem. Rev.*, 123(1): 31–72. <https://doi.org/10.1021/acs.chemrev.2c00431>

Ali Q, Ali M, Jing H, Hussain A, Manghwar H, Ali M, Raza W, Mundra S. 2024. Power of Plant Microbiome: A Sustainable approach for Agricultural resilience. *Plant Stress*, 14: 100681. <https://doi.org/10.1016/j.stress.2024.100681>

Aralappanavar V K, Mukhopadhyay R, Yu Y, Liu J, Bhatnagar A, Praveena S M, Li Y, Paller M, Adyel T M, Rinklebe J, Bolan N S, Sarkar B. 2024. Effects of microplastics on soil microorganisms and microbial functions in nutrients and carbon cycling – A review. *Sci. Total Environ.*, 924: 171435. <https://doi.org/10.1016/j.scitotenv.2024.171435>

Aziz T, Hussain N, Hameed Z, Lin L. 2024. Elucidating the role of diet in maintaining gut health to reduce the risk of obesity, cardiovascular and other age-related inflammatory diseases: recent challenges and future recommendations. *Gut Microbes*, 16(1): 2297864. <https://doi.org/10.1080/19490976.2023.2297864>

Barazzone E C, Diard M, Hug I, Larsson L, Slack E. 2024. Diagnosing and engineering gut microbiomes. *EMBO Mol. Med.*, 16(11): 2660–2677. <https://doi.org/10.1038/s44321-024-00149-4>

Beattie G A, Cotrufo F M, Crowther T W, Edlund A, Salles J F, Gilbert J A, Jansson J K, Jensen P R, Lennon J T, Makhalaanyane T, Martiny J B H, Newman D K, Stevenson M. 2024. Soil Microbial Strategies for Climate Mitigation – Report from a climate action workshop in Las Vegas, Nevada, February 2024. *Sustain. Microbiol.* <https://doi.org/10.1093/sumbio/qvae033>

Berg G, Rybakova D, Fischer D, Cernava T, Vergès M C, Charles T, Chen X, Cocolin L, Eversole K, Corral G H, Kazou M, Kinkel L, Lange L, Lima N, Loy A, Macklin J A, Maguin E, Mauchline T, McClure R, Mitter B, Schloter M. 2020. Microbiome definition re-visited: old concepts and new challenges. *Microbiome*, 8(1): 103. <https://doi.org/10.1168/s40168-020-00875-0>

Bertola M, Ferrarini A, Visioli G. 2021. Improvement of Soil Microbial Diversity through Sustainable Agricultural Practices and Its Evaluation by -Omics Approaches. *Microorganisms*, 9(7): 1400. <https://doi.org/10.3390/microorganisms9071400>

Bhattacharjee P, Karim K A, Khan Z. 2023. Harnessing the Microbiome: A Comprehensive Review on Advancing Therapeutic Strategies for Rheumatic Diseases. *Cureus*, 15(12): e50964. <https://doi.org/10.7759/cureus.50964>

Biazzo M, Deidda G. 2022. Fecal Microbiota Transplantation as New Therapeutic Avenue for Human Diseases. *J. Clin. Med.*, 11(14): 4119. <https://doi.org/10.3390/jcm11144119>

Bokulich N A, Ziemski M, Robeson M S, Kaehler B D. 2020. Measuring the microbiome: Best practices for developing and benchmarking microbiomics methods. *Comput. Struct. Biotechnol. J.*, 18: 4048–4062. <https://doi.org/10.1016/j.csbj.2020.11.049>

Chen Q, Song Y, An Y, Lu Y, Zhong G. 2024. Soil microorganisms: Their role in enhancing crop nutrition and health. *Diversity*, 16(12): 734. <https://doi.org/10.3390/d16120734>

Coban O, De Deyn G B, Van Der Ploeg M. 2022. Soil microbiota as game-changers in restoration of degraded lands. *Science*, 375(6584). <https://doi.org/10.1126/science.abe0725>

Corinaldesi C, Bianchelli S, Candela M, Dell'Anno A, Gambi C, Rastelli E, Varrella S, Danovaro R. 2023. Microbiome-assisted restoration of degraded marine habitats. *Front. Mar. Sci.*, 10. <https://doi.org/10.3389/fmars.2023.1227560>

Cui Y, Ning Z, Li M, Qin X, Yue X, Chen X, Zhu C, Sun H, Huang Y. 2025. Microbial network-driven remediation of saline-alkali soils by salt-tolerant plants. *Front. Microbiol.*, 16. <https://doi.org/10.3389/fmicb.2025.1565399>

Del Portillo M M, Clemente-Suárez V J, Ruisoto P, Jimenez M, Ramos-Campo D J, Beltran-Velasco A I, Martínez-Guardado I, Rubio-Zarapuz A, Navarro-Jiménez E, Tornero-Aguilera J F. 2024. Nutritional modulation of the Gut–Brain axis. *Metabolites*, 14(10): 549. <https://doi.org/10.3390/metabo14100549>

Ferrocino I, Rantsiou K, McClure R, Kostic T, De Souza R S C, Lange L, FitzGerald J, Kriaa A, Cotter P, Maguin E, Schelkle B, Schloter M, Berg G, Sessitsch A, Cocolin L. 2023. The need for an integrated multi-OMICs approach. *Compr. Rev. Food Sci. Food Saf.*, 22(2): 1082–1103. <https://doi.org/10.1111/1541-4337.13103>

Fregulua P, Campos M M, Dhakal R, Dias R J P, Neves A L A. 2024. Feed efficiency and enteric methane emissions indices. *Sci. Total Environ.*, 949: 175263. <https://doi.org/10.1016/j.scitotenv.2024.175263>

Fujiki J, Schnabl B. 2023. Phage therapy: Targeting intestinal bacterial microbiota for the treatment of liver diseases. *JHEP Rep.*, 5(12): 100909. <https://doi.org/10.1016/j.jhep.2023.100909>

Habtewold J, Goyal R. 2023. The Plant-Rhizobial Symbiotic Interactions Provide Benefits beyond Nitrogen Fixation. *IntechOpen*. <https://doi.org/10.5772/intechopen.109464>

Hao J, Li Y, Ge Y. 2024. Harnessing the plant microbiome for environmental sustainability. *Sci. Total Environ.*, 951: 175766. <https://doi.org/10.1016/j.scitotenv.2024.175766>

Hao X, Gu Y, Zhang H, Wang X, Liu X, Chen C, Wang C, Zhang X, Liu X, Shen X. 2024. Synthetic Microbial Community Promotes Soil Multifunctionality in Desertified Land. *Microorganisms*, 12(6): 1117. <https://doi.org/10.3390/microorganisms12061117>

Haq I U, Rahim K, Yahya G, Ijaz B, Maryam S, Paker N P. 2024. Eco-Smart Biocontrol strategies for phytopathogenic diseases. *Biotechnol. Rep.*, 44: e00859. <https://doi.org/10.1016/j.btre.2024.e00859>

Hemmati M A, Monemi M, Asli S, Mohammadi S, Foroozanmehr B, Haghmorad D, Oksenych V, Eslami M. 2024. Using new technologies to analyze gut microbiota and predict cancer risk. *Cells*, 13(23): 1987. <https://doi.org/10.3390/cells13231987>

Hosseini H, Al-Jabri H M, Moheimani N R, Siddiqui S A, Saadaoui I. 2022. Marine microbial bioprospecting: a review. *J. Basic Microbiol.*, 62(9): 1030–1043. <https://doi.org/10.1002/jobm.202100504>

Hou K, Wu Z, Chen X, Wang J, Zhang D, Xiao C, Zhu D, Koya J B, Wei L, Li J, Chen Z. 2022. Microbiota in health and diseases. *Signal Transduct. Target. Ther.*, 7(1). <https://doi.org/10.1038/s41392-022-00974-4>

Jeni R E, Villot C, Koyun O, Osorio-Doblado A, Baloyi J, Lourenco J, Steele M, Callaway T. 2023. “Probiotic” approaches to improving dairy production. *J. Dairy Sci.*, 107(4): 1832–1856. <https://doi.org/10.3168/jds.2023-23831>

Kumar A, Bisht A, SammraMaqsood N, SaiqaAmjad N, Baghel S, Jaiswal S G, Wei S. 2025. The Role of Microbiome engineering in Food Safety and Quality. *Biotechnol. Notes*. <https://doi.org/10.1016/j.biotno.2025.01.001>

Kuppan N, Padman M, Mahadeva M, Srinivasan S, Devarajan R. 2024. Sustainable bioremediation techniques for waste and pollution management. *Waste Manag. Bull.*, 2(3): 154–171. <https://doi.org/10.1016/j.wmb.2024.07.005>

Levy N, Marques J A, Simon-Blecher N, Bourne D G, Doniger T, Benichou J I C, Lim J Y, Tarazi E, Levy O. 2024. Ecosystem transplant from a healthy reef boosts coral health. *Nat. Commun.*, 15(1): 10033. <https://doi.org/10.1038/s41467-024-54149-6>

Ma Y, Chen H, Lan C, Ren J. 2018. Ethical considerations of human microbiome research and applications. *Protein Cell*, 9(5): 404–415. <https://doi.org/10.1007/s13238-018-0537-4>

Mihaylova-Garnizova R, Davidova S, Hodzhev Y, Satchanska G. 2024. Antimicrobial Peptides Derived from Bacteria. *Int. J. Mol. Sci.*, 25(19): 10788. <https://doi.org/10.3390/ijms251910788>

National Academies of Sciences, Engineering, and Medicine. 2017. Ch.4. Current Methods for Studying the Human Microbiome. In: Environmental Chemicals, the Human Microbiome, and Health Risk: A Research Strategy. Washington (DC): National Academies Press (US). <https://www.ncbi.nlm.nih.gov/books/NBK481559/>

Nazir A, Hussain F H N, Raza A. 2024. Advancing microbiota therapeutics through synthetic biology. *Front. Bioeng. Biotechnol.*, 12: 1511149. <https://doi.org/10.3389/fbioe.2024.1511149>

Olmo R, Wetzel S U, Armanhi J S L, Arruda P, Berg G, Cernava T, Cotter P D, Araujo S C, de Souza R S C, Ferrocino I, Frisvad J C, Georgalaki M, Hansen H H, Kazou M, Kiran G S, Kostic T, Krauss-Etschmann S, Kriaa A, Lange L, Maguin E, Wagner M. 2022. Microbiome Research as an Effective Driver in Agrifood Systems. *Front. Microbiol.*, 13: 834622. <https://doi.org/10.3389/fmicb.2022.834622>

Pérez-Cobas A E, Gomez-Valero L, Buchrieser C. 2020. Metagenomic approaches in microbial ecology. *Microb. Genom.*, 6(8): mgen000409. <https://doi.org/10.1099/mgen.0.000409>

Reuver M, Maher J, Wilson A M. 2022. Ocean restoration and the Marine Microbiome Strategic Plan. In: The microbiomes of humans, animals, plants, and the environment, 731–766. https://doi.org/10.1007/978-3-030-90383-1_18

Ríos-Ruiz W F, Castro-Tuana R, Valdez-Nuñez R A, Torres-Bernal L, Jave-Concepción H G, Daza-Pérez A C, Barrera-Lozano M, Archentti-Reátegui F. 2024. Co-Inoculation of Bacteria and Rhizobia for Phosphorus Availability. *Agronomy*, 14(11): 2493. <https://doi.org/10.3390/agronomy14112493>

Samantaray A, Chattaraj S, Mitra D, Ganguly A, Kumar R, Gaur A, Mohapatra P K, De Los Santos-Villalobos S, Rani A, Thatoi H. 2024. Microbial based bio-inoculum for soil health. *Curr. Res. Microbiol.*, 7: 100251. <https://doi.org/10.1016/j.crmicr.2024.100251>

Saxena R, Sharma V, Saxena A R, Patel A. 2024. Harnessing AI and gut microbiome research for precision health. *Deleted J.*, 3(1): 74–88. <https://doi.org/10.60087/jaigs.v3i1.68>

Schupack D A, Mars R A T, Voelker D H, Abeykoon J P, Kashyap P C. 2022. The promise of the gut microbiome in individualized treatment. *Nat. Rev. Gastroenterol. Hepatol.*, 19(1): 7–25. <https://doi.org/10.1038/s41575-021-00499-1>

Shi X, Zhao Y, Xu M, Ma L, Adams J M, Shi Y. 2023. Plant-microbe interactions in the rhizosphere for sustainable agriculture. *New Crops*, 1: 100004. <https://doi.org/10.1016/j.ncrops.2023.11.002>

Silverstein M R, Segrè D, Bhatnagar J M. 2023. Environmental microbiome engineering for climate change mitigation. *Glob. Change Biol.*, 29(8): 2050–2066. <https://doi.org/10.1111/gcb.16609>

Suganya K, Koo B S. 2020. Gut-Brain Axis: Role of Microbiota and Probiotics/Prebiotics in Brain Function. *Int. J. Mol. Sci.*, 21(20): 7551. <https://doi.org/10.3390/ijms21207551>

Toussaint P A, Leiser F, Thiebes S, Schlesner M, Brors B, Sunyaev A. 2024. Explainable artificial intelligence for omics data. *Brief. Bioinform.*, 25(1). <https://doi.org/10.1093/bib/bbad453>

Tripathi P, Srivastava A, Dubey C K, Mishra V, Dwivedi S, Madeshiya A K. 2024. Implementation of AI and ML in microbiology. In: *Methods in Microbiology*, 29–41. <https://doi.org/10.1016/bs.mim.2024.05.003>

Wahab A, Muhammad M, Munir A, Abdi G, Zaman W, Ayaz A, Khizar C, Reddy S P P. 2023. Role of Arbuscular Mycorrhizal Fungi in growth and stress tolerance. *Plants*, 12(17): 3102. <https://doi.org/10.3390/plants12173102>

Xia Y. 2023. Statistical normalization in microbiome cancer research. *Gut Microbes*, 15(2): 2244139. <https://doi.org/10.1080/19490976.2023.2244139>

Yadav M, Chauhan N S. 2021. Microbiome therapeutics: Current challenges. *Gastroenterol. Rep.*, 10: goab046. <https://doi.org/10.1093/gastro/goab046>

Yadegar A, Pakpoor S, Ibrahim F F, Nabavi-Rad A, Cook L, Walter J, Seekatz A M, Wong K, Monaghan T M, Kao D. 2023. Benefits of fecal microbiota transplantation in recurrent *C. difficile* infection. *Cell Host Microbe*, 31(5): 695–711. <https://doi.org/10.1016/j.chom.2023.03.019>

Yousuf S, Luo H, Zeng M, Chen L, Ma T, Li X, Zheng M, Zhou X, Chen L, Xi J, Lu H, Cao H, Ma X, Bian B, Zhang P, Wu J, Gan R, Jia B, Sun L, Liu Y. 2024. EasyAmplicon: Amplicon sequencing analysis made easy. *iMetaOmics*, 1(2). <https://doi.org/10.1002/imo2.42>

Zampieri G, Campanaro S, Angione C, Treu L. 2023. Metatranscriptomics-guided genome-scale metabolic modeling. *Cell Rep. Methods*, 3(1): 100383. <https://doi.org/10.1016/j.crmeth.2022.100383>

Zhang T, Zhang H. 2022. Microbial consortia needed for degradation of soil pollutants. *Microorganisms*, 10(2): 261. <https://doi.org/10.3390/microorganisms10020261>

Zhao M, Chu J, Feng S, Guo C, Xue B, He K, Li L. 2023. Inflammatory diseases and gut microbiota dysbiosis: A review. *Biomed. Pharmacother.*, 164: 114985. <https://doi.org/10.1016/j.bioph.2023.114985>

Zuñiga C, Zaramela L, Zengler K. 2017. Predicting microbial interactions in communities. *Microb. Biotechnol.*, 10(6): 1500–1522. <https://doi.org/10.1111/1751-7915.12855>