Supplementary Data

Bioactive potential of secondary metabolites of rhizospheric fungus Penicillium citrinum isolate-ABRF3

Mahendra Kumar Sahu¹, Digvijay Singh^{2,3}, Sharmistha Chaitali Ghosh¹, Shruthi Suthakaran, Amitava Das^{2,3*}, Harit Jha^{1*}

¹Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur- 495009, Chhattisgarh, India.

² Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad – 500 007, TS, India.

³ Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP - 201 002, India.

@Corresponding author: Dr. Harit Jha, E mail: harit74@yahoo.co.in, harit.jha@ggu.ac.in Phone: +91-9826630805

Supplementary Tables:

Sample	Chemical shift range, ppm	Type of compound	Type of proton
Ethyl oleate as standard	0.8	1° aliphatic	R-CH ₃
	1.3	2° aliphatic	R ₂ -CH ₂
	1.6	3° aliphatic	R ₃ -CH
	2.0	Carbonyl compounds	HC-C=O
	2.2	A To carbonyl (C is next to C=O)	R-CO-CH ₃
EAF	0.8	1° aliphatic	R-CH ₃
Column fraction of ABRF3	1.3	2° aliphatic	R ₂ -CH ₂
	1.6	3° aliphatic	R ₃ -CH
	2.0	Carbonyl compounds	HC-C=O
	2.3	A To carbonyl (C is next to C=O)	R-CO-CH ₃
	2.6	Alkynyl	RC≡C-H
	3.3	Ethers	HC-OR
	4.1	Esters	RCOO-CH
	5.3	Vinylic (H is attached to alkane C)	R ₂ C=HC-R

Table S2. The zone of inhibition of column fractionation of ethanolic extract and antibiotic streptomycin tested against bacterial pathogen.

Bacterial pathogen	Zone of inhibition ²							
	Colu	mn fraction of Etl	Positive [≠] control	Negative [≠] control				
	TOLUENE	CHOLORORM	E. ACETATE	METHANOL	ACETONITRYLE	Streptomycin	Ethanol	
<i>B.circulans</i> (gram +ve)	Nd	11 ± 1.3	15.4 ± 1.25	Nd	16.16 ± 1.1	24.28 ±1.25	Nd	
<i>B.subtilis</i> (gram +ve)	Nd	Nd	14.7 ± 1.15	Nd	15.81 ± 1.8	24.21 ± 0.93	Nd	
S. aureus (gram +ve)	Nd	Nd	17.18 ± 1.3	Nd	17.16 ± 0.21	24.62 ± 1.05	Nd	
<i>R. eutrophae</i> (gram – ve)	Nd	Nd	Nd	Nd	15.95 ± 1.03	25.33 ± 1.7	Nd	

Nd-not detected

The superscript letters are significantly different (p <0.05).

²Inhibition zone excluding disc

 $^{\neq}$ 6 mm disc as standard

No. of Peak	RT[min]	Area[mV*sec]	Area%	Height[mV]	Height%
1	2.1667	11.1491	0.76	0.8842	0.81
2	2.6	273.4511	18.76	21.8215	20.02
3	2.8667	522.3185	35.83	40.9223	37.55
4	3.0833	252.5314	17.32	19.6706	18.05
5	3.4333	82.9483	5.69	7.0892	6.51
6	3.95	94.3202	6.47	5.7981	5.32
7	4.55	88.2145	6.05	4.6661	4.28
8	4.6667	62.5403	4.29	4.2863	3.93
9	5	53.2769	3.65	3.2063	2.94
10	9.3167	17.1003	1.17	0.6333	0.58
		1457.851		108.9779	

Table S3. Retention time of secondary metabolites and their respective retention time obtained by HPLC.

No. of	R.	I.	F.			Height	Height	A/H	Name
Peak	Time	Time	Time	Area	Area %		%		
1	1.595	1.570	1.720	30367	0.08	7232	0.06	4.20	Carbon dioxide
2	1.783	1.720	1.865	35122557	93.61	10292604	89.58	3.41	Ethanol
3	2.050	2.035	2.080	10881	0.03	6861	0.06	1.59	2-propen-1-ol
4	2.100	2.080	2.140	195625	0.52	166660	1.45	1.17	Allyl fluoride
5	2.455	2.425	2.505	96682	0.26	68392	0.60	1.41	Ethyl acetate
6	2.545	2.515	2.575	46258	0.12	34265	0.30	1.35	Trichloromethane
7	2.597	2.575	2.660	286785	0.76	199316	1.73	1.44	1-propanol, 2-methyl
8	4.226	4.200	4.290	73414	0.20	38225	0.33	1.92	Ethane, 11-diethoxy
9	4.406	4.385	4.495	273613	0.73	118635	1.03	2.31	1-Butanol, 3-methyl-
10	4.522	4.495	4.605	103331	0.28	37515	0.33	2.75	1-Butanol, 2-methyl
11	5.261	5.220	5.305	68181	0.18	31318	0.27	2.18	Toluene
12	8.543	8.480	8.575	119969	0.32	37169	0.32	3.23	L-lactic acid
13	22.146	22.105	22.190	98328	0.26	48689	0.42	2.02	2-Propenoic Acid
14	25.358	25.330	25.420	26695	0.07	14009	0.12	1.91	Cyclopropanecaroxylic acid, undec-2 en
15	25.493	25.730	25.535	91693	0.24	42179	0.37	2.17	Hexadecanoic acid, ethyl ester
16	25.771	25.450	25.815	50250	0.13	20492	0.18	2.45	Trans-3,6-Dimethoxy-2-ethoxy-beta-meth
17	27.315	27.255	27.350	526046	1.40	208612	1.82	2.52	Linolenic acid ethyl ester
18	27.382	27.350	27.450	299783	0.80	117939	1.03	2.54	(E)-9-Octadecenoic acid ethyl ester
				37520458	100.00	11490112	100.00		

Table S4. Retention time of secondary metabolites and their respective retention time obtained by GCMS.

S. No.	Wavenumber (cm ⁻¹)	Functional group identified/Peak description					
Obtained peak from ethyl acetate fraction of isolate ABRF3							
1	1011.71	CH ₂ rocking					
2	1077.29	C-O stretching					
3	1188.2	C-OH rocking C-C stretching due to carboxylic acid, ether alcohol and esters					
4	1376.27	C-H scissoring and bending vibrations					
5	1458.25	COO- symmetric stretching					
6	1519.97	C-N symmetric stretching					
7	1703.22	C=O stretching					
8	2010.88	C=C conjugated and C =C					
9	2158.44	C=C stretchdue to alkyne					
10	2312.75	O-H bond					
11	2929.03	CH ₂ Asymmetric stretching					
12	3134.46	OH stretch due to phenol and alcohol					
13	3189.43	OH stretch due to phenol and alcohol					
Obtained	l peak from acetonitri	ile fraction of isolate ABRF3					
1	1034.85	CH ₂ rocking					
2	1082.11	C-N symmetric stretching					
3	1412.92	COO- symmetric stretching					
4	1601.95	Carbonyl group					
5	2138.18	Carbonyl group					
6	2350.36	O-H bond					
7	2945.43	OH stretch due to carboxylic acid					
8	3260.8	OH stretch due to carboxylic acid					

Table S5. The wavenumber ranges for common functional groups obtained by FTIR.

Table S6. Fungal extract and their respective diameters of spots generated during Spot Assay along with control systems using S. cerevisiae BY4742.

S. cerevisiae	spots generated during Spot Assay ²					
	С	C + E3	Positive [≠] con	Negative [≠] control		
			C + Ac	C+ Ra	C+ Ny	
BY4742 strain	09 ± 0.62	13±1.2	15±1.07	17 ± 0.96	Nd	

C- BY4742 yeast culture, C+E2- BY4742 yeast culture and ABRF2 extract, C+Ac- BY4742 yeast culture and Acarbose, C+ Ra-BY4742 yeast culture and Rapamycin, C+Ny- BY4742 yeast culture and fluconazole (Nystatin), Nd-not detected The superscript letters are significantly different (p <0.05).

Molecule	Targets used for molecular docking						
	Binding energy (KCal/mol) of different			Binding energy (KCal/mol) of different targets for			
	2L7E (SITE 1)	2KM1 (SITE 8)	1AH8 (SITE 2)	6AU4 (SITE 4)	1MP8 (SITE 2)	3SSU (SITE 1)	1ELK (SITE 7)
Doxorubicin	-10.9025	-12.0442	-22.4970	-20.4928	-26.9348	-10.5860	-23.8014
Metformin	-8.5177	-8.1610	-9.0651	-11.1820	-10.3616	-6.2210	-9.8247
Noscapine	-10.2413	-10.5427	-15.8712	-13.3896	-18.8507	-8.6372	-18.6032
Sirolimus	-8.7966	-6.2886	-19.4638	-10.1449	-9.0860	-8.9583	-12.9013
(E)-9- Octadecenoic acid ethyl ester	-10.4237	-11.1234	-10.0245	-10.7816	-11.2795	-8.1199	-11.8709

Table S7. Comparison between binding energy score (KCal/mol) from molecular docking for the compound (E)-9-Octadecenoic acid ethyl ester in antiaging and anticancer targets active site and to identify the probable mechanism of action.

Table S8. Comparison between binding energy score (KCal/mol) from molecular docking for the compound (E)-9-Octadecenoic acid ethyl ester with antiaging active sites to identify the probable mechanism of action in humans.

Molecule	Targets used for molecular docking in humans						
	Binding energy (KCal/mol) of different targets for molecular docking						
	1US7 Site	4ZZH Site	5UGW Site 11				
Epigallocatechin galate	-30.0440	-15.0544	-18.5853				
Metformin	-10.2450	-7.1900	-7.6913				
Sirolimus	-17.0859	-9.4645	-10.7863				
(E)-9-Octadecenoic acid ethyl ester	-10.6175	-10.9107	-10.3405				

Supplementary Figures Legends

Figure SF1

В

Figure SF1. *Fungal secondary metabolites isolated from Penecillium citrinum-ABRF3*. (A) Isolated brown sticky crude extract obtained from the *Penecillium citrinum-ABRF3* fungal strain. (B) Structure of the molecule (E)-9-Octadecenoic acid ethyl ester obtained by NMR spectrometry.

Figure SF2. *Chromatographic TLC analysis and visualization of spots undertaken in UV chamber.* (1) Crude ethanolic extract (100%), (2) Toluene soluble Column fraction, (3) Chloroform soluble Column fraction, (4) Ethyl Acetate soluble Column fraction, (5) Methanol soluble Column fraction, and (6) Acetonitrile soluble Column fraction.

Figure SF3. *Molecular docking and 2D interaction*. Diagram showing (E)-9-Octadecenoic acid ethyl ester compound docking pose interaction with the key amino acids in the different Human antiaging targets active site. (A) (E)-9-Octadecenoic acid ethyl ester with

4ZZH: SIRT1/Activator Complex. Human SIRT1 construct (mini-hSIRT1) containing the minimal structural elements required for lysine deacetylation and catalytic activation by small-molecule sirtuin-activating compounds (STACs). (**B**) (E)-9-Octadecenoic acid ethyl ester with 1US7: Complex of Hsp90 and P50. The Mechanism of Hsp90 Regulation by the Protein Kinase-Specific Cochaperone p50(Cdc37). (**C**) (E)-9-Octadecenoic acid ethyl ester with 5UGW: Transferase. Interaction with crystal structure of the major quadruplex formed in the human telomerase thumb domain. (Distance in Å).